Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38615307

RESUMO

Photolabile (µ-peroxo)(µ-hydroxo)bis[bis(bipyridyl)-cobalt-based caged oxygen compounds have been synthesized and characterized by optical absorbance spectroscopy, X-ray crystallography. and the quantum yield and redox stability were investigated. Furthermore, conditions were established where redox incompatibilities encountered between caged oxygen compounds and oxygen-dependant cytochrome c oxidase (CcO) could be circumvented. Herein, we demonstrate that millimolar concentrations of molecular oxygen can be released from a caged oxygen compound with spatio-temporal control upon laser excitation, triggering enzymatic turnover in cytochrome c oxidase. Spectroscopic evidence confirms the attainment of a homogeneous reaction initiation at concentrations and conditions relevant for further crystallography studies. This was demonstrated by the oxidizing microcrystals of reduced CcO by liberation of millimolar concentrations of molecular oxygen from a caged oxygen compound. We believe this will expand the scope of available techniques for the detailed investigation of oxygen-dependant enzymes with its native substrate and facilitate further time-resolved X-ray based studies such as wide/small angle X-ray scattering and serial femtosecond crystallography.

2.
Nat Commun ; 15(1): 3429, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653764

RESUMO

Carbohydrate-binding modules (CBMs) are non-catalytic proteins found appended to carbohydrate-active enzymes. Soil and marine bacteria secrete such enzymes to scavenge nutrition, and they often use CBMs to improve reaction rates and retention of released sugars. Here we present a structural and functional analysis of the recently established CBM family 92. All proteins analysed bind preferentially to ß-1,6-glucans. This contrasts with the diversity of predicted substrates among the enzymes attached to CBM92 domains. We present crystal structures for two proteins, and confirm by mutagenesis that tryptophan residues permit ligand binding at three distinct functional binding sites on each protein. Multivalent CBM families are uncommon, so the establishment and structural characterisation of CBM92 enriches the classification database and will facilitate functional prediction in future projects. We propose that CBM92 proteins may cross-link polysaccharides in nature, and might have use in novel strategies for enzyme immobilisation.


Assuntos
Proteínas de Bactérias , beta-Glucanas , beta-Glucanas/metabolismo , beta-Glucanas/química , Cristalografia por Raios X , Sítios de Ligação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Modelos Moleculares
3.
Sci Adv ; 9(49): eadh4179, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064560

RESUMO

Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.


Assuntos
Monóxido de Carbono , Complexo IV da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Domínio Catalítico , Monóxido de Carbono/química , Cristalografia , Oxirredução , Oxigênio/metabolismo
4.
J Appl Crystallogr ; 56(Pt 2): 449-460, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37032973

RESUMO

Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via light-weight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Šresolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX.

5.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 698-708, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35647917

RESUMO

Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Šresolution when exposed to XFEL radiation, which is an improvement of 0.15 Šover previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Cristalização , Cristalografia por Raios X , Lipídeos/química , Proteínas de Membrana/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Ubiquinona
6.
J Biol Chem ; 298(4): 101758, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202648

RESUMO

Tannins are secondary metabolites that are enriched in the bark, roots, and knots in trees and are known to hinder microbial attack. The biological degradation of water-soluble gallotannins, such as tannic acid, is initiated by tannase enzymes (EC 3.1.1.20), which are esterases able to liberate gallic acid from aromatic-sugar complexes. However, only few tannases have previously been studied in detail. Here, for the first time, we biochemically and structurally characterize three tannases from a single organism, the anaerobic bacterium Clostridium butyricum, which inhabits both soil and gut environments. The enzymes were named CbTan1-3, and we show that each one exhibits a unique substrate preference on a range of galloyl ester model substrates; CbTan1 and 3 demonstrated preference toward galloyl esters linked to glucose, while CbTan2 was more promiscuous. All enzymes were also active on oak bark extractives. Furthermore, we solved the crystal structure of CbTan2 and produced homology models for CbTan1 and 3. In each structure, the catalytic triad and gallate-binding regions in the core domain were found in very similar positions in the active site compared with other bacterial tannases, suggesting a similar mechanism of action among these enzymes, though large inserts in each enzyme showcase overall structural diversity. In conclusion, the varied structural features and substrate specificities of the C. butyricum tannases indicate that they have different biological roles and could further be used in development of new valorization strategies for renewable plant biomass.


Assuntos
Hidrolases de Éster Carboxílico , Clostridium butyricum , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Clostridium butyricum/enzimologia , Estrutura Terciária de Proteína , Especificidade por Substrato , Taninos/química
7.
Science ; 373(6558)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446579

RESUMO

Conformational changes within biological macromolecules control a vast array of chemical reactions in living cells. Time-resolved crystallography can reveal time-dependent structural changes that occur within protein crystals, yielding chemical insights in unparalleled detail. Serial crystallography approaches developed at x-ray free-electron lasers are now routinely used for time-resolved diffraction studies of macromolecules. These techniques are increasingly being applied at synchrotron radiation sources and to a growing diversity of macromolecules. Here, we review recent progress in the field, including visualizing ultrafast structural changes that guide the initial trajectories of light-driven reactions as well as capturing biologically important conformational changes on slower time scales, for which bacteriorhodopsin and photosystem II are presented as illustrative case studies.

8.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1019-1026, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342275

RESUMO

The thermophilic fungus Malbranchea cinnamomea contains a host of enzymes that enable its ability as an efficient degrader of plant biomass and that could be mined for industrial applications. This thermophilic fungus has been studied and found to encode eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), which collectively possess different substrate specificities for a range of plant cell-wall-related polysaccharides and oligosaccharides. To gain greater insight into the molecular determinants defining the different specificities, structural studies were pursued and the structure of McAA9F was determined. The enzyme contains the immunoglobulin-like fold typical of previously solved AA9 LPMO structures, but contains prominent differences in the loop regions found on the surface of the substrate-binding site. Most significantly, McAA9F has a broad substrate specificity, with activity on both crystalline and soluble polysaccharides. Moreover, it contains a small loop in a region where a large loop has been proposed to govern specificity towards oligosaccharides. The presence of the small loop leads to a considerably flatter and more open surface that is likely to enable the broad specificity of the enzyme. The enzyme contains a succinimide residue substitution, arising from intramolecular cyclization of Asp10, at a position where several homologous members contain an equivalent residue but cyclization has not previously been observed. This first structure of an AA9 LPMO from M. cinnamomea aids both the understanding of this family of enzymes and the exploration of the repertoire of industrially relevant lignocellulolytic enzymes from this fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Onygenales/metabolismo , Especificidade por Substrato
9.
J Biol Chem ; 296: 100500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667545

RESUMO

The gut microbiota plays a central role in human health by enzymatically degrading dietary fiber and concomitantly excreting short chain fatty acids that are associated with manifold health benefits. The polysaccharide xylan is abundant in dietary fiber but noncarbohydrate decorations hinder efficient cleavage by glycoside hydrolases (GHs) and need to be addressed by carbohydrate esterases (CEs). Enzymes from carbohydrate esterase families 1 and 6 (CE1 and 6) perform key roles in xylan degradation by removing feruloyl and acetate decorations, yet little is known about these enzyme families especially with regard to their diversity in activity. Bacteroidetes bacteria are dominant members of the microbiota and often encode their carbohydrate-active enzymes in multigene polysaccharide utilization loci (PULs). Here we present the characterization of three CEs found in a PUL encoded by the gut Bacteroidete Dysgonomonas mossii. We demonstrate that the CEs are functionally distinct, with one highly efficient CE6 acetyl esterase and two CE1 enzymes with feruloyl esterase activities. One multidomain CE1 enzyme contains two CE1 domains: an N-terminal domain feruloyl esterase, and a C-terminal domain with minimal activity on model substrates. We present the structure of the C-terminal CE1 domain with the carbohydrate-binding module that bridges the two CE1 domains, as well as a complex of the same protein fragment with methyl ferulate. The investment of D. mossii in producing multiple CEs suggests that improved accessibility of xylan for GHs and cleavage of covalent polysaccharide-polysaccharide and lignin-polysaccharide bonds are important enzyme activities in the gut environment.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Esterases/metabolismo , Microbioma Gastrointestinal , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Metabolismo dos Carboidratos , Humanos , Modelos Moleculares , Alinhamento de Sequência , Especificidade por Substrato
10.
ACS Chem Biol ; 16(1): 116-124, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33411499

RESUMO

Branched-chain fatty acids (BCFA) are encountered in Gram-positive bacteria, but less so in other organisms. The bacterial BCFA in membranes are typically saturated, with both odd- and even-numbered carbon chain lengths, and with methyl branches at either the ω-1 (iso) or ω-2 (anteiso) positions. The acylation with BCFA also contributes to the structural diversity of microbial natural products and potentially modulates biological activity. For the tunicamycin (TUN) family of natural products, the toxicity toward eukaryotes is highly dependent upon N-acylation with trans-2,3-unsaturated BCFA. The loss of the 2,3-unsaturation gives modified TUN with reduced eukaryotic toxicity but crucially with retention of the synergistic enhancement of the ß-lactam group of antibiotics. Here, we infer from genomics, mass spectrometry, and deuterium labeling that the trans-2,3-unsaturated TUN variants and the saturated cellular lipids found in TUN-producing Streptomyces are derived from the same pool of BCFA metabolites. Moreover, non-natural primers of BCFA metabolism are selectively incorporated into the cellular lipids of TUN-producing Streptomyces and concomitantly produce structurally novel neo-branched TUN N-acyl variants.


Assuntos
Produtos Biológicos/metabolismo , Metabolismo dos Lipídeos , Streptomyces/metabolismo , Produtos Biológicos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Relação Estrutura-Atividade
11.
Nature ; 589(7841): 310-314, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268896

RESUMO

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Bacterioclorofilas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cristalografia , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Hyphomicrobiaceae/enzimologia , Hyphomicrobiaceae/metabolismo , Lasers , Modelos Moleculares , Oxirredução/efeitos da radiação , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Prótons , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
12.
ACS Chem Biol ; 15(11): 2885-2895, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33164499

RESUMO

The alarming growth of antibiotic resistance that is currently ongoing is a serious threat to human health. One of the most promising novel antibiotic targets is MraY (phospho-MurNAc-pentapeptide-transferase), an essential enzyme in bacterial cell wall synthesis. Through recent advances in biochemical research, there is now structural information available for MraY, and for its human homologue GPT (GlcNAc-1-P-transferase), that opens up exciting possibilities for structure-based drug design. The antibiotic compound tunicamycin is a natural product inhibitor of MraY that is also toxic to eukaryotes through its binding to GPT. In this work, we have used tunicamycin and modified versions of tunicamycin as tool compounds to explore the active site of MraY and to gain further insight into what determines inhibitor potency. We have investigated tunicamycin variants where the following motifs have been modified: the length and branching of the tunicamycin fatty acyl chain, the saturation of the fatty acyl chain, the 6″-hydroxyl group of the GlcNAc ring, and the ring structure of the uracil motif. The compounds are analyzed in terms of how potently they bind to MraY, inhibit the activity of the enzyme, and affect the protein thermal stability. Finally, we rationalize these results in the context of the protein structures of MraY and GPT.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Domínio Catalítico/efeitos dos fármacos , Transferases/antagonistas & inibidores , Transferases/química , Tunicamicina/farmacologia , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Clostridium/enzimologia , Infecções por Clostridium/tratamento farmacológico , Guanosina Trifosfato/metabolismo , Humanos , Simulação de Acoplamento Molecular , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
13.
J Synchrotron Radiat ; 27(Pt 5): 1095-1102, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876583

RESUMO

Over the last decade, serial crystallography, a method to collect complete diffraction datasets from a large number of microcrystals delivered and exposed to an X-ray beam in random orientations at room temperature, has been successfully implemented at X-ray free-electron lasers and synchrotron radiation facility beamlines. This development relies on a growing variety of sample presentation methods, including different fixed target supports, injection methods using gas-dynamic virtual-nozzle injectors and high-viscosity extrusion injectors, and acoustic levitation of droplets, each with unique requirements. In comparison with X-ray free-electron lasers, increased beam time availability makes synchrotron facilities very attractive to perform serial synchrotron X-ray crystallography (SSX) experiments. Within this work, the possibilities to perform SSX at BioMAX, the first macromolecular crystallography beamline at  MAX IV Laboratory in Lund, Sweden, are described, together with case studies from the SSX user program: an implementation of a high-viscosity extrusion injector to perform room temperature serial crystallography at BioMAX using two solid supports - silicon nitride membranes (Silson, UK) and XtalTool (Jena Bioscience, Germany). Future perspectives for the dedicated serial crystallography beamline MicroMAX at MAX IV Laboratory, which will provide parallel and intense micrometre-sized X-ray beams, are discussed.


Assuntos
Cristalografia por Raios X/instrumentação , Síncrotrons , Desenho de Equipamento , Laboratórios , Compostos de Silício , Suécia , Temperatura
14.
Sci Rep ; 10(1): 13775, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792608

RESUMO

Chitin is one of the most abundant renewable organic materials found on earth. The chitin utilization locus in Flavobacterium johnsoniae, which encodes necessary proteins for complete enzymatic depolymerization of crystalline chitin, has recently been characterized but no detailed structural information on the enzymes was provided. Here we present protein structures of the F. johnsoniae chitobiase (FjGH20) and chitinase B (FjChiB). FjGH20 is a multi-domain enzyme with a helical domain not before observed in other chitobiases and a domain organization reminiscent of GH84 (ß-N-acetylglucosaminidase) family members. The structure of FjChiB reveals that the protein lacks loops and regions associated with exo-acting activity in other chitinases and instead has a more solvent accessible substrate binding cleft, which is consistent with its endo-chitinase activity. Additionally, small angle X-ray scattering data were collected for the internal 70 kDa region that connects the N- and C-terminal chitinase domains of the unique 158 kDa multi-domain chitinase A (FjChiA). The resulting model of the molecular envelope supports bioinformatic predictions of the region comprising six domains, each with similarities to either Fn3-like or Ig-like domains. Taken together, the results provide insights into chitin utilization by F. johnsoniae and reveal structural diversity in bacterial chitin metabolism.


Assuntos
Acetilglucosaminidase/metabolismo , Domínio Catalítico/genética , Quitina/metabolismo , Quitinases/metabolismo , Flavobacterium/enzimologia , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitinases/genética , Cristalografia por Raios X , Flavobacterium/genética , Flavobacterium/metabolismo , Modelos Moleculares
15.
Acta Crystallogr D Struct Biol ; 75(Pt 10): 937-946, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588925

RESUMO

Serial crystallography is having an increasing impact on structural biology. This emerging technique opens up new possibilities for studying protein structures at room temperature and investigating structural dynamics using time-resolved X-ray diffraction. A limitation of the method is the intrinsic need for large quantities of well ordered micrometre-sized crystals. Here, a method is presented to screen for conditions that produce microcrystals of membrane proteins in the lipidic cubic phase using a well-based crystallization approach. A key advantage over earlier approaches is that the progress of crystal formation can be easily monitored without interrupting the crystallization process. In addition, the protocol can be scaled up to efficiently produce large quantities of crystals for serial crystallography experiments. Using the well-based crystallization methodology, novel conditions for the growth of showers of microcrystals of three different membrane proteins have been developed. Diffraction data are also presented from the first user serial crystallography experiment performed at MAX IV Laboratory.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Halorrodopsinas/química , Lipídeos/química , Proteínas de Membrana/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rodopsinas Sensoriais/química , Proteínas de Bactérias/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Halobacteriaceae/enzimologia , Hyphomicrobiaceae/enzimologia , Thermus thermophilus/enzimologia
17.
Nat Commun ; 10(1): 2589, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197138

RESUMO

X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.


Assuntos
Elétrons , Lasers , Microtúbulos/ultraestrutura , Imagem Molecular/métodos , Tubulina (Proteína)/ultraestrutura , Algoritmos , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Processamento de Imagem Assistida por Computador , Imagem Molecular/instrumentação , Espalhamento de Radiação , Síncrotrons , Raios X
18.
J Appl Crystallogr ; 52(Pt 2): 378-386, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996717

RESUMO

The X-ray crystallography station I911-2 at MAXLab II (Lund, Sweden) has been adapted to enable difference small- and wide-angle X-ray scattering (SAXS/WAXS) data to be recorded. Modifications to the beamline included a customized flow cell, a motorized flow cell holder, a helium cone, a beam stop, a sample stage and a sample delivery system. This setup incorporated external devices such as infrared lasers, LEDs and reaction mixers to induce conformational changes in macromolecules. This platform was evaluated through proof-of-principle experiments capturing light-induced conformational changes in phytochromes. A difference WAXS signature of conformational changes in a plant aqua-porin was also demonstrated using caged calcium.

19.
Drug Discov Today ; 23(7): 1426-1435, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29778697

RESUMO

The rapid growth of antibiotic-resistant bacterial infections is of major concern for human health. Therefore, it is of great importance to characterize novel targets for the development of antibacterial drugs. One promising protein target is MraY (UDP-N-acetylmuramyl-pentapeptide: undecaprenyl phosphate N-acetylmuramyl-pentapeptide-1-phosphate transferase or MurNAc-1-P-transferase), which is essential for bacterial cell wall synthesis. Here, we summarize recent breakthroughs in structural studies of bacterial MraYs and the closely related human GPT (UDP-N-acetylglucosamine: dolichyl phosphate N-acetylglucosamine-1-phosphate transferase or GlcNAc-1-P-transferase). We present a detailed comparison of interaction modes with the natural product inhibitors tunicamycin and muraymycin D2. Finally, we speculate on possible routes to design an antibacterial agent in the form of a potent and selective inhibitor against MraY.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Peptidoglicano/biossíntese , Transferases/antagonistas & inibidores , Animais , Antibacterianos/síntese química , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/síntese química , Humanos , Modelos Moleculares , Nucleosídeos/química , Nucleosídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Transferases/química , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Tunicamicina/química , Tunicamicina/farmacologia
20.
Structure ; 25(9): 1461-1468.e2, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28781082

RESUMO

Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.


Assuntos
Hyphomicrobiaceae/metabolismo , Proteínas de Membrana/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Hyphomicrobiaceae/química , Modelos Moleculares , Fotossíntese , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...